10MCA12

First Semester MCA Degree Examination, January 2011 **Discrete Mathematics**

Max. Marks:100 Time: 3 hrs.

Note: Answer any FIVE full questions.

- a. Define power set with examples and show that the power set contains 2ⁿ elements. (06 Marks) 1
 - b. For any sets A, B and C, prove the following:

i)
$$A \cap (B - C) = (A \cap B) - C$$

ii)
$$(A - B) \cap (A - C) = A - (B \cup C)$$

- c. Let X be the set of all the three digit integers, that is, $X = \{x \text{ is an integer } / 100 \le x \le 999 \}$. If A_i is the set of numbers in X, whose ith digit is i, compute the cardinality of the set $A_1 \cup A_2 \cup A_3$ (08 Marks)
- a. Define the following: i) Proposition ii) Tautology iii) Contradiction Determine whether the following compound statement is tautology or not:

$$[(p \rightarrow q) \land (p \rightarrow q)] \rightarrow (p \rightarrow r)$$

(08 Marks)

b. Prove the following by using the laws of logic:

i)
$$p \rightarrow (q \rightarrow r) \leq p \wedge q \rightarrow r$$

i)
$$p \rightarrow (q \rightarrow r) \iff (p \land q) \rightarrow r$$
 ii) $[\sim P \land (\sim q \land r)] \lor [(q \land r) \lor (p \land r)] \iff r$ (08 Marks)

c. Verify the principles of duality for the logical equivalence:

$$\sim (p \land q) \rightarrow \sim p \lor (\sim p \lor q) <=> \sim p \lor q$$

(04 Marks)

Using the rules of inference, show that the following argument is valid: 3

$$p \rightarrow q$$

$$s \lor r$$

$$r \rightarrow \neg q$$

$$\therefore s \lor t$$

(06 Marks)

Simplify the following switching networks (without using truth table.) [Refer Fig.Q3(b)]

(06 Marks)

Establish the validity of the following argument:

$$\forall x [p(x) \lor q(x)]$$

$$\exists x \neg p(x)$$

$$\forall x [\neg q(x) \lor r(x)]$$

$$\forall x [s(x) \rightarrow \neg r(x)]$$

$$\therefore \exists x \neg s(x)$$

(08 Marks)

- a. Define: i) Well-ordering principle ii) Principle of mathematical induction. (06 Marks) 4
 - b. By mathematical induction, prove that $n! \ge 2^{n-1}$, $\forall n \ge 1$. (06 Marks)
 - A sequence $\{a_n\}$ is defined recursively by $a_1 = 4$, $a_n = a_{n-1} + n$ for $n \ge 2$. Find a_n in explicit (08 Marks) form.

a. Define Cartesian product of sets, with example. 5

Show that i)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
 ii) $(A \cup B) \times C = (A \times C) \cup (B \times C)$ (08 Marks)

- b. Let $A = \{1, 2, 3, 4\}$. Let R be a relation on A, defined by xRy iff x/y and y=2x. Find
 - i) R is relation of set of ordered pairs
 - Draw digraph of R ii)
 - Determine in degree and out-degree of all vertices. iii)

(06 Marks)

- c. R be an equivalence relation on A and a, $b \in A$, then show that the following statements are true i) $a \in [a] \text{ or } a \in R(a)$
 - - ii) aRb iff [a]=[b] or R(a)=R(b)
 - iii) $[a] \cap [b] \neq \emptyset$ then [a] = [b]

(06 Marks)

- a. Which of the following functions are bijections?

 - i) $f: R \rightarrow R$ given by f(x) = 2x 3 ii) $g: R \rightarrow R$ given by $g(x) = x^2 2$
 - b. ABC is an equilateral triangle whose sides are of length 1 cm each. If we select 5 points inside the triangle, prove that at least two of these points are such that the distance between them is less than ½ cm. (06 Marks)
 - c. Define the invertible function, with an example. Show that a function $f: A \to B$ is invertible iff it is one to one and onto. (08 Marks)
- a. Let (G, *) and (G', *') be groups with identities e and e' respectively. If $f: G \to G'$ is a homomorphism, prove that i) f(e) = e' ii) $f(a^{-1}) = (f(a))^{-1}$, $\forall a \in G$. (06 Marks)
 - b. State and prove the Lagrange's theorem.

(06 Marks)

- c. A binary symmetric channel has probability p = 0.05 of incorrect transmission. If the word C = 011011101 is transmitted, what is the probability that
 - i) Single error occurs ii) three errors occur, no two of them consecutive?

(08 Marks)

- a. Construct a decoding table (with syndromes) for the group code given by the generator 8 , using the decoding table, decode the following received words: 11110, 11011, 10000, 10101. (10 Marks)
 - b. Show that z_5 is an integral domain.

(05 Marks)

c. Prove that z_n is a field iff n is a prime.

(05 Marks)